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Abstract: High dimensional feature selection and data assignment is an important feature for high dimensional object 

analysis. In this work, we propose a new hybrid approach of combining attribute reduction of the Rough-set theory with 

Grey relation clustering. Designing clustering becomes increasingly tougher task as the dimensionality of the data set 

increases. Previously constraint based clustering algorithms that satisfy user specified constraints have been used for 
high dimensional data sets. Such algorithms suffer from serious limitations and can introduce biases of the user, thus 

obscuring discovery of clusters and hidden relations in the data set. In this work, we transform the high relevance 

values into the same class using Grey relation to give an appropriate cluster of information, which we process through 

Rough set to reduce attributes. We use this approach to analyze the data of plant diversity from North America and find 

that ground elevation and species numbers can capture the most important attributes of the data set. This analysis of 

ecological data presents a proof of principal for the novel hybrid approach using Grey relational clustering and Rough 

set theory.  
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1. INTRODUCTION 

 

Clustering provide a better understanding of the data by 

dividing data point into clusters such that objects in the 

same cluster are similar[1], whereas objects in different 

cluster are dissimilar with respect to a given similarity 

measure[2]. Clustering of many algorithms has been 

studied for decades but in the age of data deluge 

conventional clustering algorithm is showing cracks and 

novel algorithms are needed. In the case of high 

dimensional data, a problem of clustering of data points 

that do not have enough feature relevance becomes a big 

problem[3]. Thus, data clustering in the case of high 
dimensional data poses two separate problems: (1) the 

search for relevant sub spaces[4] and (2) the detection of 

the final clusters  
 

High dimensional data clustering algorithms could be 

categorized by their ways of dealing with local feature 

relevance. Subspace clustering algorithms employ 
dimension selection methods to form a subspace for each 

cluster. Subspace clustering algorithms can be both hard 

and soft. In hard clustering, where one datum point can 

belong to one and only one cluster, the performance 

subspace clustering algorithms is frequently hindered by 

the tough choice of relevant dimensions of clusters. Errors 

of missing relevant dimensions and inclusion of irrelevant 

dimensions also cause problems in hard subspace 

clustering. In hard subspace clustering algorithms, the 

selected dimensions of each cluster are viewed as equally 

important. However, in reality the dimensions of each 
subspace are usually not uniformly important in the same 

way for all the clusters. 

 
 

In soft subspace clustering a datum point can belong to 

more than one cluster. While soft subspace clustering 

algorithms can remove irrelevant dimensions by not 

assigning a specific subspace for each cluster but it fails to 

deal with the problem of feature relevance[5]. The 

irrelevant dimensions, which are usually low weighted, 

tend to add noise to the procedures of finding cluster in 

these algorithms, leading to poor clustering results[6]. It 

seems that these kinds of algorithms could be adapted to 

include a dimension selection function by assigning some 

dimensions with 0 weights; nevertheless it’s hard to 
determine which dimensions should be 0 weighted and 

until now there is no such a scheme. Moreover, there are 

usually a small number of relevant dimensions and very 

large number of irrelevant dimensions for each cluster.  
 

Thus such a scheme is inefficient. However, if we perform 

dimension selection firstly and then perform dimension 
weighting, the computation can be largely reduced. To 

detect the final cluster, most high dimensional data 

clustering algorithms adopt a centroid-based approach, 

where initial centroids are established, followed by 

assigning data points to the closest centroid. Updating the 

centroids and reassigning data point according to some 

optimization criterion refines the clusters. From the above 

discussion we conclude that dimension selection, 

dimension weighting and data assignment (initial and 

reassignment) are three essential tasks for high dimension 

data clustering. High dimensional data clustering is a 
challenging science. Each underlying task is hard to solve 

and to add to the woes, the three tasks of dimension 



IJARCCE 
 ISSN (Online) 2278-1021 

ISSN (Print) 2319 5940 

 
International Journal of Advanced Research in Computer and Communication Engineering 

        Vol. 5, Issue 5, May 2016 
 

Copyright to IJARCCE                                               DOI 10.17148/IJARCCE.2016.5595                                                       405 

selection, dimension weighting and data assignment are 

circularly dependent on each other. 

 

 2.  PROBLEM DEFINITION 

 

2.1 Introduction 

The common theme of these problems is that when the 

dimensionality increases, the volume of the space 

increases so fast that the available data become sparse. 

This sparsity is problematic for any method that requires 

statistical significance. In order to obtain a statistically 
sound and reliable result, the amount of data needed to 

support the result often grows exponentially with the 

dimensionality. This led to the phrase “curse of 

dimensionality” by Richard E. Bellman, when considering 

problems in dynamic optimization. For distance functions 

and nearest neighbor search, recent research shows that 

data sets that are sparse due to high dimensionality can 

still be processed, unless there are too many irrelevant 

dimensions, while relevant dimensions can make some 

problems such as clustering actually easier. Any low-

dimensional data space can trivially be turned into a 
higher-dimensional space by adding redundant or 

randomized dimensions, and in turn many high-

dimensional data sets can be reduced to lower-dimensional 

data without significant information loss of information. 

 

2.2 Dimensionality Reduction  

Dimensionality Reduction is a process of reducing 

attributes from the data set. Within a data set there are 

exists superfluous information that is non-essential and 

this superfluous information contributes to the data 

complexity, increasing the time needed for analysis. There 

are several methods of dimensionality reduction, with the 
common ones being: 

 Independent Component Analysis 

 Principal Component Analysis (PCA)  

 Probabilistic PCA (PPCA)  

 The Kernel Trick  

 Kernel PCA  

 Canonical Correlation Analysis  

 Linear Discriminant Analysis 

 

I am briefly describing PCA as an example, as it is used 
primarily for linear data sets and I am also employing 

linear data set for my analysis. The Principal Component 

Analysis (PCA) is one of the dimension reduction methods 

consisting of the transfer of data to a new orthogonal basis, 

whose axes are oriented in the directions of the maximum 

variance of the input data set. The variance is maximum 

along the first axis of the new basis, while the second axis 

maximizes variance, subject to the first axis orthogonally, 

and so forth, the last axis having the least variance of all 

possible ones. Such transformation permits information to 

be reduced by rejecting the coordinates that correspond to 

the directions with a minimum variance. If one of the base 
vectors needs to be rejected, that should preferably be the 

vector along which the input data set is less changeable. In 

most cases, PCA does not guarantee that the selected first 

principal components will be the most adequate for 

classification. One of the possibilities for selecting 

discriminative features from principal components is to 

apply rough sets theory. 

 

3. PROPOSED METHOD 

 

Many real-world data sets consist of a very high 

dimensional feature space. Clustering real-world data sets 

is often hampered by the so-called curse of dimensionality. 

Most of the common algorithms fail to generate 

meaningful results for clustering because of the inherent 
sparsity of the data space. Usually, clusters cannot be 

found in the original feature space because several features 

may be irrelevant for clustering. However, clusters are 

usually embedded in the lower dimensional subspaces. In 

addition, different sets of features may be relevant for 

different sets of objects. Thus, objects can often be 

clustered differently in varying subspaces of the original 

feature space. In this thesis, I am going to cluster high 

dimensional data using hybrid approach. I briefly describe 

the two approaches that I am hybridizing.  

 

3.1 Rough Set 

Rough set theory is used in various research areas, such as 

soft computing, machine learning, decision-making, data 

mining and KDD (Knowledge Data Discovery) for data 

analysis. Rough Set Theory is very helpful in reduction of 

dimensionality from high dimensional data sets. Rough 

Set theory was introduced by Zdzislaw Pawlak in the early 

1980s [7]. Rough set is a fastest growing mathematical 

tool, which deals with intelligence and espionage data and 

data mining. Figure 1 summarizes the scheme of rough set.  
 

Let consider there are information set 𝑆 =< 𝑈,𝐴 > where 

U represents the set of non-empty finite objects 

{ 𝑈𝑖
𝑛
𝑖=1 }and A represents set of non-empty finite 

attributes. Where {a} is the value of attribute generally 

represents as {𝑎:𝑈 → 𝑉𝑎}for every{𝑎 ∈ 𝐴}. In any 
information system the set of attributes are the collection 

of conditional attribute {𝐶} and decision attribute {𝐷} 

hence we can represents the {𝐴 = 𝐶 ∪ 𝐷} in information 

set equation 𝐷𝑇 =< 𝑈,𝐶 ∪ 𝐷 >is known as decision 

table. A decision table can be classified as a supervised 

learning, where the outcome of any system are well known 

and this posterior knowledge is well distinguished in an 

attribute that is called “Decision Attribute”. If 𝑝 ⊆ 𝐴 then 

p is an association equivalence relation and this relation 

can also specified as a Indiscernible Relation. Assume 

𝛿 = (𝑈,𝐴) is an information system, then any 𝑝 ⊆
𝐴associated with equivalence class can be represents 

as𝐼𝑁𝐷𝛿(𝑝).  

Now we are exploring two important terms in rough set 

theory: 

Approximation defines when p is an association relation 

with attribute set A { 𝑝 ⊆ 𝐴 } and { 𝑋 ⊆ 𝑈} can be 

approximated using the information in p construction. 

Lower Approximation: A lower approximation R* 
represents the values which are surely belongs in set. 

𝑅∗ = {𝑈𝑥 ∈∪ {𝑝 𝑥 ⊆ 𝑋}} 

Upper Approximation: An Upper approximation R* 

represents those values which are possibly belongs in set.  
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𝑅∗ = {𝑈𝑥 ∈∪ {𝑝 𝑥 :𝑝(𝑥) ∩ 𝑋 ≠ ∅}} 

A boundary region in a Rough set is describe as those 

objects that can neither ruled nor ruled out as a member of 

target set X. represents as  if there is an empty 

region then it look likes  this situation belongs 
to crisp set if it does not happen that mean it’s in Rough 

set.  

 

3.2 Dependency of Attribute 

Dependency in an attribute of similarly and can be 

extracted from relational data set. If all the values of any 

attribute A1 are uniquely determined by attribute A2 then 
we can say that attribute A1 totally depends on attribute 

A2 and this expression represents as (A2 -> A1). We can 

also measure the degree of dependency which deviates 

between (0, 1). It can be easily seen that if D depends 

totally on A2, then I (A2) ⊆ I (A1).  

That means that the partition generated by A2 is finer than 

the partition generated by A1.  

Notice that Dependency discussed above corresponds to 

that considered in relational databases. If A1 depends on 

the degree of k, 0 ≤ k ≤ 1, on C, then. 

𝛿 𝐴2,𝐴1 =
|𝑃𝑜𝑠𝐴2(𝐴1)|

|𝑈|
 

Where     𝑃𝑜𝑠𝐴2 𝐴1 =∪ 𝐴2 𝑋 ,𝑋 ∈ 𝑈/𝐼(𝐴1)             

     

3.4 Rough Set Reduct 

Reduct in a rough set theory applied when attribute 

reduction is needed, when the information set are having 

dispensable attributes that are increasing unwanted weight 

of the information. Reduct reduces the dispensable 
attribute without changing its original classification [8]. 

Thus the reduct is the minimal subset of attribute that 

enables the classification of the elements. 

𝑐𝑜𝑟𝑒 𝑇 =∩ 𝑅𝑒𝑑𝑢𝑐𝑡(𝑇) 

Where core (T) is set of all indispensable attribute of T 

and Reduct(T) is the set of all superfluous elements. 

 

 
Figure 3.1: Process Diagram of Rough Set Dimensionality 

Reduction 

ALGORITHM 1.0 –RST 

 Begin  

        Initialization : C=Conditional Attribute , D= 
Decision Attribute 

      If(I(Q)==I(Q-{a})) Begin 

              Then  a= dispensable; 

                   Else a= Indispensable; 

             End 

//Select Core  

              Begin core(T) =reduct(T) 
             End 

End 

 

3.5 Grey System: 

 Prof. Deng introduced the concept of Grey system theory 

in 1982. Grey system theory took the hypothetical black 

box and white box approach, representing unknown and 

known values respectively and introduced moderate values 
that are partially known and partially unknown as the grey 

system. In 1989, Prof. Deng proposed another theory on 

Grey Clustering Analysis (GCA), where he also described 

grey number, and grey equations. Grey relation analysis 

describes the relationship degree of objects, which extends 

the discrete sequence of values. Grey clustering relation 

explores the relation through hierarchal structure and has 

the flexibility in nature of classification, while exhibiting 

an effective performance[9]. 

 

3.6 Grey Relation Analysis 

 

 
            Figure 3.2: Process Diagram for Grey Clustering 

 

This model is often applied for predicting decision making 

in industrial engineering and management science. Grey 

Relation System analyzes the impact of change between 

two events or components and is a simple decision process 

technique that is described in Figure 2. 
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ALGORITHM 2.0 GRA 

      Begin 

𝒙 = {𝒙𝟏 ,𝒙𝟐, 𝒙𝟑…𝒙𝒏} //Select Standard Vector. 

∆ 𝒌 = |𝒙𝒊 𝒌 − 𝒙𝒋(𝒌)|   //Difference Matrix 

∆𝒎𝒂𝒙[𝒊,𝒋]= 𝒎𝒂𝒙|𝒙𝒊 𝒌 − 𝒙𝒋(𝒌)|   and    ∆𝒎𝒊𝒏[𝒊,𝒋]=

𝒎𝒂𝒙|𝒙𝒊 𝒌 − 𝒙𝒋(𝒌)| 

𝑮𝒓  𝒙𝒊 𝒌 ,𝒙𝒋 𝒌  =  ∆𝒎𝒊𝒏 + 𝜹∆𝒎𝒂𝒙 ÷

 ∆𝒊𝒋 𝒌 + 𝜹∆𝒎𝒂𝒙  // 

ℶ(𝒊, 𝒋) = 𝟏\𝒌  ∑(𝒌 =

𝟏)^𝒌▒〖𝑮𝒓 (𝒙_𝒊 (𝒌),𝒙_𝒋 (𝒌) ) 〗// Grey Relation 

𝑮(𝒊, 𝒋) = 〖(ℶ〗(𝒊, 𝒋) + ℶ(𝒊, 𝒋))/𝟐 

〖𝒎𝒂𝒙〗(𝒊, 𝒋) (𝑮(𝒊, 𝒋)) 

End 

 

4. EXPERIMENT 

 

In this paper, we are using an ecological data set of plant 

diversity of North American Island, which consists lots of 

attributes that can affect the Richness of plant.  

 

 

 

 

 
 

 

 

 

 

 

 

In respect to analysis we are applying Rough Set theory 

for reducing its superfluous attribute and for adjusting the 

affine objects we analyze the discretized data after RST 

approach. In our next step, we used Gray Relation method 

for clustering the similar objects. The main obstacles 

facing current Data Analysis techniques are that of dataset 

dimensionality. Usually, a redundancy-removing step is 

carried out beforehand to enable these techniques to be 

effective. Rough Set Theory (RST) has been used as such 

a dataset pre-processor with much success, however it is 

reliant upon a discretized dataset; but in some case the 
important information may be lost as a result of 

discretisation. 

Step 2: If there any dispensable attribute in data set then 

Reduct otherwise make it as Indispensable elements. 

 

4.1 Rule Generation 

Rule generation will generate the rules based on reduct 

and core of Table 2. It’s produced the reduced set Rough-

Set of relation that can transform the same inductive 

classification of Relation. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

The set P of attributes is the reduct (or covering) of 

another set Q of attributes if P is minimal and the 

indiscernibility relations, defined by P and Q are same. 

 

𝑐𝑜𝑟𝑒 =∩ 𝑟𝑒𝑑𝑢𝑐𝑡 
 
In applying Reduct method we eliminates the superfluous 

information from Table 1 and regenerate another table 

with having those attribute which are more better associate 

with other values. 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

4.2 Grey Relation Analysis of Reduction Table 

The hierarchical grey relation clustering analysis 

calculation has been process in following steps: 

 

Step 4: Calculate the difference of values: 

Where ∆𝑖𝑗  𝑘  difference function and 𝑥𝑖 𝑘  represents the 

i and j row respectively. 

∆𝑖𝑗  𝑘 = |𝑥𝑖 𝑘 − 𝑥𝑗 (𝑘)| 
 

      Where 𝑖, 𝑗 ∈  1,2,3,4…𝑛 𝑎𝑛𝑑 𝑘 = {1,2} 

Table 4.1: Plant Diversity Data-Set [*] 

 

 

Island 

tot.ric

h 

ntv.ri

ch 

no.ri

ch Pct Area latitude 

ele

v 

dist.m

nland 

dist.islan

d 

Soil 

Type 

1 Appledore  182 79 103 57 40 42.99 18 10 10 6 

2 Bear  64 43 21 33 3 41.25 13 0.3 0.3 1 

3 Block  661 396 265 40 2707 41.18 64 20.6 20.6 59 

4 Cuttyhunk  311 173 138 44 61 41.42 46 10.8 0.4 11 

5 Fishers  920 516 404 44 1190 41.27 40 2.7 2.7 35 

6 Gardiners  390 249 141 36 1350 41.08 37 6.7 6.7 37 

7 Grand Ma. 633 374 259 41 13600 44.75 122 17.5 17.5 . 

8 Gull Rock 34 15 19 56 4 44.96 10 13.2 1 . 

9 Horse  107 75 32 30 4 41.24 10 1.9 0.3 1 

10 Isle au Haut 641 370 271 42 1900 44.05 165 22.9 8.1 21 

11 Kent Island 232 120 112 48 128 44.58 20 30.1 7 . 

12 Machias S. 72 24 48 67 10 44.5 6 17.7 17.7 . 

13 Martha’s V 979 605 374 38 13600 41.39 95 13.4 13.4 47 

14 Matinicus  62 21 41 66 8 43.79 15 30.6 4.7 1 

15 Mount  1060 620 440 42 26668 44.33 466 0.3 0.3 74 

16 Muskeget  156 88 68 44 140 41.33 10 35.7 7.5 4 

17 Nantucket  1166 625 541 46 10900 41.27 33 42.5 21 27 

18 Naushon  564 362 202 36 2300 41.47 53 8.6 8.6 18 

19 Penikese  347 181 166 48 34 41.45 21 8.5 1.6 6 

20 Tuckernuck  353 224 129 37 350 41.3 15 34 3 16 

21 Whaleboat  163 99 64 39 47 43.76 23 1.3 1.3 4 

22 Wooden B. 155 69 86 55 46 43.86 19 27.4 4.3 2 
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Table 4.2: Reduct Table 

 

Total Rich Area Elevation Non-native_richness 

(155,329] (41.5,44]  Inf] 

[-Inf,155] [-Inf,41.3] [-Inf,7.15] [-Inf,38.2] 

(639, Inf] [-Inf,41.3] (13.3,26.3] (38.2,43] 

(155,329] (41.3,41.5] (7.15,13.3] (43,48] 

(639, Inf] [-Inf,41.3] [-Inf,7.15] (43,48] 

(329,639] [-Inf,41.3] [-Inf,7.15] [-Inf,38.2] 

(329,639] (44, Inf] (13.3,26.3] (38.2,43] 

(155,329] (44, Inf] (7.15,13.3] (48, Inf] 

[-Inf,155] [-Inf,41.3] [-Inf,7.15] [-Inf,38.2] 

(639, Inf] (44, Inf] (13.3,26.3] (38.2,43] 

(155,329] (44, Inf] (26.3, Inf] (48, Inf] 

[-Inf,155] (44, Inf] (13.3,26.3] [-Inf,38.2] 

(639, Inf] (41.3,41.5] (13.3,26.3  ] (38.2,43] 

[-Inf,155] (41.5,44] (26.3, Inf] (43,48] 

(639, Inf] (44, Inf] [-Inf,7.15] (48, Inf] 

(155,329] (41.3,41.5] (26.3, Inf] [-Inf,38.2] 

(639, Inf] [-Inf,41.3] (26.3, Inf] (48, Inf] 

(329,639] (41.5,44] (7.15,13.3] (38.2,43] 

(329,639] (41.3,41.5] (7.15,13.3] (43,48] 

(329,639] (41.3,41.5] (26.3, Inf] (43,48] 

(155,329] (41.5,44] [-Inf,7.15] [-Inf,38.2] 

[-Inf,155] (41.5,44] (26.3, Inf] (43,48] 

Table 4.3: Reduct Plant Diversity Data 

 

ID American Island Plant Richness (Diversity) Ground Elevation 

1 Appledore Island 182 18 

2 Bear Island 64 13 

3 Block Island 661 64 

4 Cuttyhunk Island 311 46 

5 Fishers Island 920 40 

6 Gardiners Island 390 37 

7 Grand Manan Island 633 122 

 

Table 4.4: Difference Table 

 

ID American Island Plant Richness (Diversity) Ground Elevation 

1 Appledore Island 0 0 

2 Bear Island 118 5 

3 Block Island 479 46 

4 Cuttyhunk Island 129 28 

5 Fishers Island 738 22 

6 Gardiners Island 208 19 

7 Grand Manan Island 451 104 

 

Calculate the Maximum and Minimum values of the 

difference series. 

∆𝑚𝑎𝑥 [𝑖 ,𝑗 ]= 𝑚𝑎𝑥|𝑥𝑖 𝑘 − 𝑥𝑗 (𝑘)|and∆𝑚𝑖𝑛 [𝑖 ,𝑗 ]=

𝑚𝑎𝑥|𝑥𝑖 𝑘 − 𝑥j(k)| 

Calculate grey relation Coefficient   

Gr  xi k , xj k  =  ∆min + δ∆max ÷  ∆ij  k 

+ δ∆max 
 

Where δ = 0.1  an adjustable variable, i, j ∈
 1,2,3,4…n and k = {1,2}
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Table 4.5: Grey Relation Table 

 

ID American Island Plant Richness (Diversity) Ground Elevation 

1 Appledore Island 1 1 

2 Bear Island 0.384 0.936 

3 Block Island 0.133 0.616 

4 Cuttyhunk Island 0.363 0.724 

5 Fishers Island 0.090 0.770 

6 Gardiners Island 0.261 0.795 

7 Grand Manan Island 0.140 0.415 

 

Step 6: 

Calculate grey relation grade: 

ℶi,j = 1\k   Gr  xi k , xj k  

k

k=1

 

 

     Where     i, j ∈  1,2,3,4…n and k = {1,2} 
 

 

 

Table 4.6: Grey grade relation Table 

 

ID Appledore 

Island 

Bear 

Island 

Block 

Island 

Cuttyhunk 

Island 

Fishers 

Island 

Gardiners 

Island 

Grand Manan 

Island 

Appledore 1.000 0.684 0.337 0.502 0.449 0.469 0.238 

Bear Island 0.660 1.000 0.314 0.422 0.425 0.413 0.216 

Block 0.374 0.375 1.000 0.459 0.514 0.412 0.582 

Cuttyhunk 0.543 0.489 0.456 1.000 0.528 0.627 0.289 

Fishers 0.430 0.425 0.456 0.500 1.000 0.518 0.287 

Gardiners 0.528 0.494 0.434 0.653 0.552 1.000 0.293 

Grand Manan 0.277 0.284 0.593 0.301 0.739 0.563 1.000 

 

Step 7:Develop matrix G 

Gi,j = (ℶi,j + ℶi,j)/2 

 

 

 

Table 4.7: Developed Grey Matrix G 

 

ID Appledore 

Island 

Bear 

Island 

Block 

Island 

Cuttyhunk 

Island 

Fishers 

Island 

Gardiners 

Island 

Grand 

Manan Island 

Appledore 1.000       

Bear 0.672 1.000      

Block 0.355 0.344 1.000     

Cuttyhunk 0.522 0.455 0.457 1.000    

Fishers 0.439 0.425 0.485 0.514 1.000   

Gardiners 0.498 0.453 0.423 0.640 0.535 1.000  

Grand Manan 0.257 0.250 0.587 0.295 0.513 0.428 1.000 

 

 
Fig 4.1: Relational Degree Plot 
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Step 8:Create Cluster by using comparison of two 

nearest point. 

 

maxi,j(Gi,j) 

 

 

Table 4.8: Clustering Table 
 

Cluster-1 (0.500-0.600) Gardiners Island, Bear Island, Appledore Island, Cuttyhunk Island, 

Fishers, Grand Manan Island. 

Cluster-2(0.300-0.400) Bear Island 

Cluster-3(0.200-0.300) Bear Island 

                                                           

 
Fig. 4.2: Dendogram Representation 

 

5.  CONCLUSION 
 

This paper presents a new approach for extracting 

knowledge from large set of information, including high 
dimensional object analysis using Rough Set attribute 

reduction technique and using Grey Relational Clustering. 

I have used this data for ecological data set but have not 

explored its other applications. I have yet to compare this 

approach with other existing approaches. I expect this 

clustering approach to have benefits in data mining, 

agriculture, financial data analysis, biology, and several 

other fields.  
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